Домой Речь Вывод формулы интегрирования по частям. Методы интегрирования. Применение метода интегрирования по частям

Вывод формулы интегрирования по частям. Методы интегрирования. Применение метода интегрирования по частям

Этот метод основан на следующей формуле: (*)

Пусть и - функции от х, имеющие непрерывные производные и .

Известно, что или ; или .

Интегралы и , так как по условию функции u и v дифференцируемы, а значит и непрерывны.

Формула (*) носит название формулы интегрирования по частям.

Метод, основанный на ее применении, называется методом интегрирования по частям.

Он сводит вычисления к вычислению другого интеграла: .

Применение метода интегрирования по частям состоит в том, что под интегральное выражение заданного интеграла стараются представить в виде произведения , где и - некоторые функции от х, причем эти функции выбирают так, чтобы была для вычисления проще, чем исходный интеграл. При для вычисления предварительно находят и .

(в качестве “v” берут одну какую-либо из исходных первообразных, находимых по dv,поэтому в дальнейшем при вычислении “v” постоянную С в записи будем опускать).

Замечание. Разбивая под интегральное выражение на множители , должны понимать, что должен содержать и .

Общих правил для разложения под интегрального выражения на множители «u» и «dv», к сожалению, дать нельзя. Этому может научить большая и вдумчивая практика.

При всем этом следует иметь в виду, чтобы был проще, чем исходный интеграл.

Пример 6.6.22.

Иногда для получения окончательного результата правило интегрирования по частям применяют последовательно несколько раз.

Метод интегрирования по частям удобно применять, конечно, далеко не всякий раз и умение пользоваться им зависит от наличия опыта.

При вычислении интегралов важно правильно установить, каким методом интегрирования следует пользоваться (так в предыдущем примере тригонометрическая подстановка быстрее приводит к цели).

Рассмотрим наиболее часто встречающиеся интегралы, которые вычисляются интегрированием по частям.

1.Интегралы вида :

где - целый (относительно х) многочлен; а – постоянное число.

Если под знаком интеграла стоит произведение тригонометрической или показательной функции алгебраическую, то за «u» обычно принимают алгебраическую функцию.



Пример6.6.23.

Заметим, что другая разбивка на множители: не приводит к цели.

Доказано,
.

Получим более сложный интеграл.

2.Интегралы вида :

где - многочлен.

Если под знаком интеграла стоит произведение логарифма функции или обратной тригонометрической функции на алгебраическую, то за «u» следует принимать функции .

Пример6.6.23.

3.Интегралы вида:

Здесь можно использовать любую из 2-х возможных разбивок под интегрального выражения на множители: за «u» можно принять как , так и .

Причем вычисление таких интегралов с помощью метода интегрирования по частям приводит к исходному интегралу, то есть получается уравнение относительно искомого интеграла.

Пример 6.6.24.Вычислить .

.

При интегрировании часто приходится последовательно применять метод подстановки и метод интегрирования по частям.

Пример 6.6.25.

Интегрирование некоторых функций, содержащих квадратный трехчлен

1)

.

а это - табличные интегралы.

2) коэффициенты действительного числа

в числителе выделяем производную знаменателя.

a,b,c – действительные числа

а) ; то имеем:

б) . В этом случае имеет смысл рассматривать только тогда, когда дискриминант трехчлена положителен:

Теперь имеем:

Замечание. На практике не пользуются обычно готовыми результатами, а предпочитают всякий раз проводить аналогичные вычисления вновь.

Пример.

4)

Преобразуем числитель так, чтобы из него можно было выделить производную квадратного трехчлена:

В связи с тем, что не существует на практике удобного общего метода вычисления неопределенных интегралов, приходится на ряду с частными методами интегрирования (см.предыдущую лекцию) рассматривать также способы интегрирования некоторых частных классов функций, интегралы от которых часто встречаются на практике.

Важнейшим классом среди них является класс рациональных функций.

«Интегрирование дробно-рациональных функций»

Интегрирование правильной рациональной дроби основано на разложении рациональной дроби в сумму элементарных дробей.

Элементарные (простейшие) дроби и их интегрирование.

Определение. Дроби вида: ; (1)

(2), где

(то есть корни трехчлена являются комплексными), называются элементарными.

Рассмотрим интегрирование элементарных дробей

2)

(где пусть ).

Вычислим интеграл

(*)

Последний интеграл вычисляется с помощью рекуррентной формулы.

Иногда интегрирование по частям позволяет получить соотношение между неопределенным интегралом, содержащим степень некоторой функции, и аналогичным интегралом, но с меньшим показателем степени той же функции. Подобные соотношения называют рекуррентными формулами.

Обозначим через .

Имеем:

В последнем интеграле положим:

Поэтому

откуда

Таким образом, мы пришли к рекуррентной формуле: повторное применение которой в конечном счете приводит к «табличному» интегралу:

Затем вместо «t» и «k» подставляем их значения.

Пример6.6.26.

(по рекурр. формуле).=

.

Рациональной дробью называется функция представимая в виде ; где и - многочлены с действительными коэффициентами.

Рациональная дробь называется правильной если степень числителя меньше степени знаменателя.

Всякая правильная рациональная дробь может быть представлена в виде суммы конечного числа элементарных дробей.

Разложение правильной дроби на элементарные определяется следующей теоремой, которую рассмотрим без доказательства.

Теорема . Если дробь - правильная и , (где трехчлен не имеет действительных корней), то справедливо тождество:

(I)

Отметим, что каждому действительному корню, например а, кратности « » многочлена в этом разложении соответствует сумма элементарных дробей вида (1), а каждой паре комплексно сопряженных корней и (таких, что ) кратности « » - сумма элементарных дробей вида (2).

Чтобы осуществлять разложение (I), нужно научиться определять коэффициенты .

Существуют различные способы их нахождения. Мы рассмотрим метод неопределенных коэффициентов и метод частных значений.

Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x) . Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x) . Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫ d(U(x)V(x))=U(x)V(x)+C , получаем соотношение

Называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.

Применение метода интегрирования по частям

В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:
  1. Математическое ожидание непрерывной случайной величины . Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x) .
  2. Разложение в ряд Фурье . При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x) .

Типовые разложения по частям

При использовании формулы интегрирования по частям нужно удачно выбрать U и dV , чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=e x , dV=xdx . Тогда dU=e x dx , и Вряд ли интеграл ∫ x 2 e x dx можно считать проще исходного.
Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫ x 2 sin(x)dx .

Интегралы ∫ e ax cos(bx)dx и ∫ e ax sin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.

Пример №1 . Вычислить ∫ xe x dx .
Положим U=x , dV=e x dx . Тогда dU=dx , V=e x . Поэтому ∫ xe x dx=xe x -∫ e x dx=xe x -e x +C .

Пример №2 . Вычислить ∫ xcos(x)dx .
Полагаем U=x , dV=cos(x)dx . Тогда dU=dx , V=sin(x) и ∫ xcos(x)dx=xsin(x) - ∫ sin(x)dx = xsin(x)+cos(x)+C

Пример №3 . ∫ (3x+4)cos(x)dx
Решение:

Ответ: (3x+4)sin(x)+3cos(x)+C

Метод интегрирования по частям используется тогда, когда нужно упростить имеющийся неопределенный интеграл или свести его к табличному значению. Чаще всего он применяется в случае наличия показательных, логарифмических, прямых и обратных тригонометрических формул и их сочетаний в подынтегральном выражении.

Основная формула, необходимая для использования этого метода, выглядит так:

∫ f (x) d x = ∫ u (x) d (v (x)) = u (x) v (x) - ∫ v (x) d (u (x))

Она означает, что нам нужно сначала представить выражение под интегралом в качестве произведения функции u (x) и дифференциала функции v (x) . После этого мы вычисляем значение функции v (x) каким-либо методом (чаще всего применяется метод непосредственного интегрирования), а полученные выражения подставляем в указанную формулу, сводя исходный интеграл к разности u (x) v (x) - ∫ v (x) d (u (x)) . Полученный в итоге интеграл также можно взять, используя любой метод интегрирования.

Рассмотрим задачу, в которой нужно найти множество первообразных функции логарифма.

Пример 1

Вычислите неопределенный интеграл ∫ ln (x) d x .

Решение

Используем метод интегрирования по частям. Для этого берем ln (x) как функцию u (x) , а остаток подынтегрального выражения – как d (v (x)) . В итоге получаем, что ln (x) d x = u (x) d (v (x)) , где u (x) = ln (x) , d (v (x)) = d x .

Дифференциалом функции u (x) является d (u (x)) - u " (x) d x = d x x , а функция v (x) может быть представлена как v (x) = ∫ d (v (x)) = ∫ d x = x

Важно: константа C при вычислении функции v (x) будет считаться равной 0 .

Подставим то, что у нас получилось, в формулу интегрирования по частям:

∫ ln (x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = ln (x) · x - ∫ x · d x x = ln (x) · x - ∫ d x = ln (x) · x - x + C 1 = = x (ln (x) - 1) + C

где C = - C 1

Ответ: ∫ ln (x) d x = x (ln (x) - 1) + C .

Наиболее сложным в применении данного метода является выбор, какую именно часть исходного выражения под интегралом взять в качестве u (x) , а какую – d (v (x)) .

Разберем несколько стандартных случаев.

Если у нас в условии стоят интегралы вида ∫ P n (x) · e a x d x , ∫ P n (x) · sin (a x) d x либо ∫ P n (x) · cos (a x) d x , где a является коэффициентом, а P n (x) – многочленом степени n , то в качестве функции u (x) нужно взять именно P n (x) .

Пример 2

Найдите множество первообразных функции f (x) = (x + 1) · sin (2 x) .

Решение

Мы можем взять по частям неопределенный интеграл ∫ (x + 1) · sin (2 x) d x . Берем x + 1 в качестве u (x) и sin (2 x) d x в качестве d (v (x)) , то есть d (u (x)) = d (x + 1) = d x .

Используя непосредственное интегрирование, получим:

v (x) = ∫ sin (2 x) d x = - 1 2 cos (2 x)

Подставляем в формулу интегрирования по частям:

∫ (x + 1) · sin (2 x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = (x + 1) · - 1 2 cos (2 x) - ∫ - 1 2 cos (2 x) d x = = - 1 2 (x + 1) · cos (2 x) + 1 2 ∫ cos (2 x) · d (x) = = - 1 2 (x + 1) · cos (2 x) + 1 4 sin (2 x) + C

Ответ: ∫ (x + 1) · sin (2 x) d x = - 1 2 (x + 1) · cos (2 x) + 1 4 sin (2 x) + C .

Пример 3

Вычислите неопределенный интеграл ∫ (x 2 + 2 x) e x d x .

Решение

Берем многочлен второго порядка x 2 + 2 x в качестве u (x) и d (v (x)) - e x d x .

∫ x 2 + 2 x e x d x = u (x) = x 2 + 2 x , d (v (x)) = e x d x d (u (x)) = (2 x + 2) d x , v (x) = ∫ e x d x = e x = = u (x) v (x) - ∫ v (x) d (u (x)) = (x 2 + 2 x) e x - ∫ (2 x + 2) e x d x

К тому, что у нас получилось, надо опять применить метод интегрирования по частям:

∫ (2 x + 2) e x d x = (x 2 + 2 x) e x - ∫ 2 x + 2 e x d x = = u (x) = (2 x + 2) , d (v (x)) = e x d x d (u (x)) = 2 d x , v (x) = ∫ e x d x = e x = = (x 2 + 2 x) e x - (2 x + 2) e x - ∫ v (x) d (u (x)) = = (x 2 + 2 x) e x - (2 x + 2) e x - ∫ 2 e x d x = = (x 2 + 2 x - 2 x - 2) e x + 2 ∫ e x d x = (x 2 - 2) e x + 2 e x + C = x 2 e x + C

Ответ: ∫ (x 2 + 2 x) e x d x = x 2 e x + C .

Пример 4

Вычислите интеграл ∫ x 3 cos 1 3 x d x .

Решение

Согласно методу интегрирования по частям, берем u (x) = x 3 и d (v (x)) = cos 1 3 x d x .

В таком случае d (u (x)) = 3 x 2 d x и v (x) = ∫ cos 1 3 x d x = 3 sin 1 3 x .

Теперь подставим полученные выражения в формулу:

∫ x 3 cos 1 3 x d x = u (x) v (x) - ∫ v (x) d (u)) = = x 3 3 sin 1 3 x - ∫ 3 x 2 3 sin 1 3 x d x = = 3 x 3 sin 1 3 x - 9 ∫ x 2 sin 1 3 x d x

У нас получился неопределенный интеграл, который опять же нужно взять по частям:

∫ x 3 cos 1 3 x d x = 3 x 3 sin 1 3 x - 9 ∫ x 2 sin 1 3 x d x = = u (x) = x 2 , d (v (x)) = sin 1 3 x d x d (u (x)) = 2 x d x , v (x) = ∫ sin 1 3 x d x = - 3 cos 1 3 x = = 3 x 3 sin 1 3 x - 9 - 3 x 2 cos 1 3 x - ∫ - 3 cos 1 3 x · 2 x d x = = 3 x 3 sin 1 3 x + 27 x 2 · cos 1 3 x - 54 ∫ x cos 1 3 x d x

Выполняем частичное интегрирование еще раз:

∫ x 3 cos 1 3 x d x = 3 x 3 sin 1 3 x + 27 x 2 · cos 1 3 x - 54 ∫ x cos 1 3 x d x = = u (x) = x , d (v (x)) = cos 1 3 x d x d (u (x)) = d x , v (x) = ∫ cos 1 3 x d x = 3 sin 1 3 x = = 3 x 3 sin 1 3 x + 27 x 2 cos 1 3 x - 54 3 x sin 1 3 x - ∫ 3 sin 1 3 x d x = = 3 x 3 - 162 x sin 1 3 x + 27 x 2 cos 1 3 x + 162 ∫ sin 1 3 x d x = = (3 x 3 - 162 x) sin 1 3 x + 27 x 2 cos 1 3 x - 486 cos 1 3 x + C = = (3 x 3 - 162 x) sin 1 3 x + (27 x 2 - 486) cos 1 3 x + C

Ответ: ∫ x 3 cos 1 3 x d x = (3 x 3 - 162 x) sin 1 3 x + (27 x 2 - 486) cos 1 3 x + C .

Если же у нас в условии стоят интегралы вида ∫ P n (x) · ln (a x) d x , ∫ P n (x) · a r c sin (a x) d x , ∫ P n (x) · a r c cos (a x) d x , ∫ P n (x) · a r c t g (a x) d x , ∫ P n (x) · a r c c t g (a x) d x

то нам следует брать в качестве u (x) функции a r c t g (a x) , a r c c t g (x) , ln (a x) , a r c sin (a x) , a r cos (a x) .

Пример 5

Вычислите множество первообразных функции (x + 1) ln (2 x) .

Решение

Принимаем ln (2 x) в качестве u (x) , а (x + 1) d x – в качестве d (v (x)) . Получаем:

d (u (x)) = (ln (2 x)) " d x = 1 2 x (2 x) " d x = d x x v (x) = ∫ (x + 1) d x = x 2 2 + x

Подставим эти выражения в формулу:

∫ (x + 1) ln (2 x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = x 2 2 + x ln 2 x - ∫ x 2 2 + x d x x = = x 2 2 + x ln (2 x) - ∫ x 2 + 1 d x = x 2 2 + x ln 2 x - 1 2 ∫ x d x - ∫ d x = = x 2 2 + x ln (2 x) - x 2 4 - x + C

Ответ: ∫ (x + 1) ln (2 x) d x = x 2 2 + x ln (2 x) - x 2 4 - x + C .

Пример 6

Вычислите неопределенный интеграл ∫ x · a r c sin (2 x) d x .

Решение

Решаем, какую часть взять за u (x) , а какую – за d (v (x)) . Согласно правилу, приведенному выше, в качестве первой функции нужно взять a r c sin (2 x) , а d (v (x)) = x d x . Получим:

d (u (x)) = (a r c sin (2 x) " d x = 2 x " d x 1 - (2 x) 2 = 2 d x 1 - (2 x) 2 , v (x) = ∫ x d x = x 2 2

Подставляем значения в формулу:

∫ x · a r c sin (2 x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = x 2 2 a r c sin (2 x) - ∫ x 2 2 - 2 d x 1 - (2 x) 2 = x 2 2 a r c sin (2 x) - ∫ x 2 d x 1 - 4 x 2

В итоге мы пришли к следующему равенству:

∫ x · a r c sin (2 x) d x = x 2 2 a r c sin (2 x) - ∫ x 2 d x 1 - 4 x 2

Теперь вычислим получившийся в итоге интеграл ∫ x 2 d x 1 - 4 x 2:

∫ x 2 d x 1 - 4 x 2 = ∫ x 2 d x 4 1 4 - x 2 = 1 2 ∫ x 2 d x 1 4 - x 2 = - 1 2 ∫ - x 2 d x 1 4 - x 2 = = - 1 2 ∫ 1 4 - x 2 - 1 4 1 4 - x 2 d x = - 1 2 1 4 - x 2 d x + 1 8 ∫ d x 1 4 - x 2 = = - 1 2 ∫ 1 4 - x 2 d x + 1 8 a r c sin (2 x)

Здесь можно применить метод интегрирования по частям и получить:

∫ x 2 d x 1 - 4 x 2 = - 1 2 ∫ 1 4 - x 2 d x + 1 8 a r c sin (2 x) = = u (x) = 1 4 - x 2 , d (v (x)) = d x d (u (x)) = 1 4 - x 2 " d x 2 1 4 - x 2 = - x d x 1 4 - x 2 , v (x) = ∫ d x = x = = - 1 2 u (x) v (x) - ∫ v (x) d (u (x)) + 1 8 a r c sin (2 x) = = - 1 2 x 1 4 - x 2 - ∫ - x 2 d x 1 4 - x 2 + 1 8 a r c sin (2 x) = = - 1 2 x 1 4 - x 2 - 1 2 ∫ x 2 d x 1 4 - x 2 + 1 8 a r c sin (2 x) = = - 1 2 x 1 4 - x 2 - ∫ x 2 d x 1 - 4 x 2 + 1 8 a r c sin (2 x)

Теперь наше равенство выглядит так:

∫ x 2 d x 1 - 4 x 2 = - 1 2 x 1 4 - x 2 - ∫ x 2 d x 1 - 4 x 2 + 1 8 a r c sin (2 x)

Мы видим, что интеграл справа аналогичен тому, что получился слева. Переносим его в другую часть и получаем:

2 ∫ x 2 d x 1 - 4 x 2 = - 1 2 x 1 4 - x 2 + 1 8 a r c sin (2 x) + C 1 ⇒ x 2 d x 1 - 4 x 2 = - 1 4 x 1 4 - x 2 + 1 16 a r c sin (2 x) + C 2 x 2 d x 1 - 4 x 2 = - 1 8 x 1 4 - x 2 + 1 16 a r c sin (2 x) + C 2

где C 2 = C 1 2

Вернемся к исходным переменным:

∫ x · a r c sin (2 x) d x = x 2 2 a r c sin (2 x) - ∫ x 2 d x 1 - 4 x 2 = = x 2 2 a r c sin (2 x) - - 1 8 x 1 - 4 x 2 + 1 16 a r c sin (2 x) + C 2 = = 1 2 x 2 - 1 8 a r c sin (2 x) + 1 8 x 1 - 4 x 2 + C

где С = - С 2

Ответ: ∫ x · a r c sin (2 x) d x = 1 2 x 2 - 1 8 a r c sin (2 x) + 1 8 x 1 - 4 x 2 + C .

Если же у нас в задаче стоит интеграл вида ∫ e a · x · sin (b x) d x либо ∫ e a · x · cos (b x) d x , то в качестве u (x) может быть выбрана любая функция.

Пример 7

Вычислите неопределенный интеграл ∫ e x · sin (2 x) d x .

Решение

∫ e x sin (2 x) d x = u (x) = sin (2 x) , d (v (x)) = e x d x d (u (x)) = 2 cos (2 x) d x , v (x) = ∫ e x d x = e x = = u (x) v (x) - ∫ v (x) d (u (x)) = sin (2 x) e x - ∫ e x · 2 cos 2 x d x = = sin (2 x) e x - 2 ∫ e x cos (2 x) d x = u (x) = cos (2 x) , d (v (x)) = e x d x d (u (x)) = - 2 sin (2 x) d x , v (x) = ∫ e x d x = e x = = sin (2 x) e x - 2 cos (2 x) e x - ∫ (e x (- 2 sin (2 x) d x)) = = sin (2 x) e x = 2 cos (2 x) e x - 4 ∫ e x sin (2 x) d x

В итоге у нас получится:

∫ e x sin (2 x) d x = sin (2 x) e x - 2 cos (2 x) e x - 4 ∫ e x sin (2 x) d x

Мы видим одинаковые интегралы слева и справа, значит, можем привести подобные слагаемые:

5 ∫ e x sin (2 x) d x = sin (2 x) e x - 2 cos (2 x) e x ⇒ ∫ e x sin (2 x) d x = 1 5 sin (2 x) e x - 2 5 cos (2 x) e x + C

Ответ: ∫ e x sin (2 x) d x = 1 5 sin (2 x) e x - 2 5 cos (2 x) e x + C

Этот способ решения является стандартным, и справа нередко получается интеграл, который идентичен исходному.

Мы рассмотрели наиболее типовые задачи, в которых можно точно определить, какую часть выражения взять за d (v (x)) , а какую за u (x) . В остальных случаях это приходится определять самостоятельно.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Интегрирование по частям. Примеры решений

И снова, здравствуйте. Сегодня на уроке мы научимся интегрировать по частям. Метод интегрирования по частям – это один из краеугольных камней интегрального исчисления. На зачете, экзамене студенту почти всегда предлагают решить интегралы следующих типов: простейший интеграл (см. статью ) либо интеграл на замену переменной (см. статью ) либо интеграл как раз на метод интегрирования по частям .

Как всегда, под рукой должны быть: Таблица интегралов и Таблица производных . Если у Вас до сих пор их нет, то, пожалуйста, посетите кладовку моего сайта: Математические формулы и таблицы . Не устану повторять – лучше всё распечатать. Весь материал я постараюсь изложить последовательно, просто и доступно, в интегрировании по частям нет особых трудностей.

Какую задачу решает метод интегрирования по частям? Метод интегрирования по частям решает очень важную задачу, он позволяет интегрировать некоторые функции, отсутствующие в таблице, произведение функций, а в ряде случаев – и частное. Как мы помним, нет удобной формулы:. Зато есть такая: – формула интегрирования по частям собственной персоной. Знаю, знаю, ты одна такая – с ней мы и будем работать весь урок (уже легче).

И сразу список в студию. По частям берутся интегралы следующих видов:

1) , , – логарифм, логарифм, умноженный на какой-нибудь многочлен.

2) , – экспоненциальная функция, умноженная на какой-нибудь многочлен. Сюда же можно отнести интегралы вроде – показательная функция, умноженная на многочлен, но на практике процентах так в 97, под интегралом красуется симпатичная буква «е». … что-то лирической получается статья, ах да… весна же пришла.

3) , , – тригонометрические функции, умноженные на какой-нибудь многочлен.

4) , – обратные тригонометрические функции («арки»), «арки», умноженные на какой-нибудь многочлен.

Также по частям берутся некоторые дроби, соответствующие примеры мы тоже подробно рассмотрим.

Интегралы от логарифмов

Пример 1

Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный – он берётся по частям. Решаем:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям:

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за , а что-то за .

В интегралах рассматриваемого типа за всегда обозначается логарифм.

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал :

Дифференциал – это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.

Теперь находим функцию . Для того чтобы найти функцию необходимо проинтегрировать правую часть нижнего равенства :

Теперь открываем наше решение и конструируем правую часть формулы: .
Вот кстати, и образец чистового решения с небольшими пометками:


Единственный момент, в произведении я сразу переставил местами и , так как множитель принято записывать перед логарифмом.

Как видите, применение формулы интегрирования по частям, по сути дела, свело наше решение к двум простым интегралам.

Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом обязательно проводится упрощение – в рассматриваемом примере мы сократили подынтегральное выражение на «икс».

Выполним проверку. Для этого нужно взять производную от ответа:

Получена исходная подынтегральная функция, значит, интеграл решён правильно.

В ходе проверки мы использовали правило дифференцирования произведения: . И это не случайно.

Формула интегрирования по частям и формула – это два взаимно обратных правила.

Пример 2

Найти неопределенный интеграл.

Подынтегральная функция представляет собой произведение логарифма на многочлен.
Решаем.

Я еще один раз подробно распишу порядок применения правила, в дальнейшем примеры будут оформляться более кратко, и, если у Вас возникнут трудности в самостоятельном решении, нужно вернуться обратно к первым двум примерам урока.

Как уже говорилось, за необходимо обозначить логарифм (то, что он в степени – значения не имеет). За обозначаем оставшуюся часть подынтегрального выражения.

Записываем в столбик:

Сначала находим дифференциал :

Здесь использовано правило дифференцирования сложной функции . Не случайно, на самом первом уроке темы Неопределенный интеграл. Примеры решений я акцентировал внимание на том, что для того, чтобы освоить интегралы, необходимо «набить руку» на производных. С производными придется столкнуться еще не раз.

Теперь находим функцию , для этого интегрируем правую часть нижнего равенства :

Для интегрирования мы применили простейшую табличную формулу

Теперь всё готово для применения формулы . Открываем «звёздочкой» и «конструируем» решение в соответствии с правой частью :

Под интегралом у нас снова многочлен на логарифм! Поэтому решение опять прерывается и правило интегрирования по частям применяется второй раз. Не забываем, что за в похожих ситуациях всегда обозначается логарифм.

Хорошо бы, если к данному моменту простейшие интегралы и производные Вы умели находить устно.

(1) Не путаемся в знаках! Очень часто здесь теряют минус, также обратите внимание, что минус относится ко всей скобке , и эти скобки нужно корректно раскрыть.

(2) Раскрываем скобки. Последний интеграл упрощаем.

(3) Берем последний интеграл.

(4) «Причесываем» ответ.

Необходимость дважды (а то и трижды) применять правило интегрирования по частям возникает не так уж и редко.

А сейчас пара примеров для самостоятельного решения:

Пример 3

Найти неопределенный интеграл.

Этот пример решается методом замены переменной (или подведением под знак дифференциала)! А почему бы и нет – можете попробовать взять его по частям, получится забавная вещь.

Пример 4

Найти неопределенный интеграл.

А вот этот интеграл интегрируется по частям (обещанная дробь).

Это примеры для самостоятельного решения, решения и ответы в конце урока.

Вроде бы в примерах 3,4 подынтегральные функции похожи, а вот методы решения – разные! В этом-то и состоит основная трудность освоения интегралов – если неправильно подобрать метод решения интеграла, то возиться с ним можно часами, как с самой настоящей головоломкой. Поэтому чем больше вы прорешаете различных интегралов – тем лучше, тем легче пройдут зачет и экзамен. Кроме того, на втором курсе будут дифференциальные уравнения, а без опыта решения интегралов и производных делать там нечего.

По логарифмам, пожалуй, более чем достаточно. На закуску могу еще вспомнить, что студенты-технари логарифмами называют женскую грудь =). Кстати, полезно знать назубок графики основных элементарных функций: синуса, косинуса, арктангенса, экспоненты, многочленов третьей, четвертой степени и т.д. Нет, конечно, презерватив на глобус
я натягивать не буду, но теперь вы многое запомните из раздела Графики и функции =).

Интегралы от экспоненты, умноженной на многочлен

Общее правило:

Пример 5

Найти неопределенный интеграл.

Используя знакомый алгоритм, интегрируем по частям:


Если возникли трудности с интегралом , то следует вернуться к статье Метод замены переменной в неопределенном интеграле .

Единственное, что еще можно сделать, это «причесать» ответ:

Но если Ваша техника вычислений не очень хороша, то самый выгодный вариант оставить ответом или даже

То есть, пример считается решенным, когда взят последний интеграл. Ошибкой не будет, другое дело, что преподаватель может попросить упростить ответ.

Пример 6

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Данный интеграл дважды интегрируется по частям. Особое внимание следует обратить на знаки – здесь легко в них запутаться, также помним, что – сложная функция.

Больше про экспоненту рассказывать особо нечего. Могу только добавить, что экспонента и натуральный логарифм взаимно-обратные функции, это я к теме занимательных графиков высшей математики =) Стоп-стоп, не волнуемся, лектор трезв.

Интегралы от тригонометрических функций, умноженных на многочлен

Общее правило: за всегда обозначается многочлен

Пример 7

Найти неопределенный интеграл.

Интегрируем по частям:

Хммм, …и комментировать нечего.

Пример 8

Найти неопределенный интеграл

Это пример для самостоятельного решения

Пример 9

Найти неопределенный интеграл

Еще один пример с дробью. Как и в двух предыдущих примерах за обозначается многочлен.

Интегрируем по частям:

Если возникли трудности или недопонимание с нахождением интеграла , то рекомендую посетить урок Интегралы от тригонометрических функций .

Пример 10

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Подсказка: перед использованием метода интегрирования по частям следует применить некоторую тригонометрическую формулу, которая превращает произведение двух тригонометрических функций в одну функцию. Формулу также можно использовать и в ходе применения метода интегрирования по частям, кому как удобнее.

Вот, пожалуй, и всё в данном параграфе. Почему-то вспомнилась строчка из гимна физмата «А синуса график волна за волной по оси абсцисс пробегает»….

Интегралы от обратных тригонометрических функций.
Интегралы от обратных тригонометрических функций, умноженных на многочлен

Общее правило: за всегда обозначается обратная тригонометрическая функция .

Напоминаю, что к обратным тригонометрическим функциям относятся арксинус, арккосинус, арктангенс и арккотангенс. Для краткости записи я буду называть их «арками»

Вычислить первообразные функции мы можем не всегда, но задача на дифференцирование может быть решена для любой функции. Именно поэтому единого метода интегрирования, который можно использовать для любых типов вычислений, не существует.

В рамках данного материала мы разберем примеры решения задач, связанных с нахождением неопределенного интеграла, и посмотрим, для каких типов подынтегральных функций подойдет каждый метод.

Метод непосредственного интегрирования

Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.

Пример 1

Вычислите множество первообразных функции f (x) = 2 x + 3 2 · 5 x + 4 3 .

Решение

Для начала изменим вид функции на f (x) = 2 x + 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 .

Мы знаем, что интеграл суммы функций будет равен сумме этих интегралов, значит:

∫ f (x) d x = ∫ 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 d x = ∫ 3 2 · 5 x + 4 1 3 d x

Выводим за знак интеграла числовой коэффициент:

∫ f (x) d x = ∫ 2 x d x + ∫ 3 2 (5 x + 4) 1 3 d x = = ∫ 2 x d x + 2 3 · ∫ (5 x + 4) 1 3 d x

Чтобы найти первый интеграл, нам нужно будет обратиться к таблице первообразных. Берем из нее значение ∫ 2 x d x = 2 x ln 2 + C 1

Чтобы найти второй интеграл, потребуется таблица первообразных для степенной функции ∫ x p · d x = x p + 1 p + 1 + C , а также правило ∫ f k · x + b d x = 1 k · F (k · x + b) + C .

Следовательно, ∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

У нас получилось следующее:

∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

причем C = C 1 + 3 2 C 2

Ответ: ∫ f (x) d x = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

Непосредственному интегрированию с применением таблиц первообразных мы посвятили отдельную статью. Рекомендуем вам ознакомиться с ней.

Метод подстановки

Такой метод интегрирования заключается в выражении подынтегральной функции через новую переменную, введенную специально для этой цели. В итоге мы должны получить табличный вид интеграла или просто менее сложный интеграл.

Этот метод очень полезен, когда нужно интегрировать функции с радикалами или тригонометрические функции.

Пример 2

Вычислите неопределенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Добавим еще одну переменную z = 2 x - 9 . Теперь нам нужно выразить x через z:

z 2 = 2 x - 9 ⇒ x = z 2 + 9 2 ⇒ d x = d z 2 + 9 2 = z 2 + 9 2 " d z = 1 2 · z d z = z d z

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9

Берем таблицу первообразных и узнаем, что 2 ∫ d z z 2 + 9 = 2 3 a r c t g z 3 + C .

Теперь нам нужно вернуться к переменной x и получить ответ:

2 3 a r c t g z 3 + C = 2 3 a r c t g 2 x - 9 3 + C

Ответ: ∫ 1 x 2 x - 9 d x = 2 3 a r c t g 2 x - 9 3 + C .

Если нам приходится интегрировать функции с иррациональностью вида x m (a + b x n) p , где значения m , n , p являются рациональными числами, то важно правильно составить выражение для введения новой переменной. Подробнее об этом читайте в статье, посвященной интегрированию иррациональных функций.

Как мы говорили выше, метод подстановки удобно использовать, когда требуется интегрировать тригонометрическую функцию. Например, с помощью универсальной подстановки можно привести выражение к дробно рациональному виду.

Этот метод объясняет правило интегрирования ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C .

Добавляем еще одну переменную z = k · x + b . У нас получается следующее:

x = z k - b k ⇒ d x = d z k - b k = z k - b k " d z = d z k

Теперь берем получившиеся выражения и добавляем их в интеграл, заданный в условии:

∫ f (k · x + b) d x = ∫ f (z) · d z k = 1 k · ∫ f (z) d z = = 1 k · F z + C 1 = F (z) k + C 1 k

Если же мы примем C 1 k = C и вернемся к исходной переменной x , то у нас получится:

F (z) k + C 1 k = 1 k · F k x + b + C

Метод подведения под знак дифференциала

Это метод основывается на преобразовании подынтегрального выражения в функцию вида f (g (x)) d (g (x)) . После этого мы выполняем подстановку, вводя новую переменную z = g (x) , находим для нее первообразную и возвращаемся к исходной переменной.

∫ f (g (x)) d (g (x)) = g (x) = z = ∫ f (z) d (z) = = F (z) + C = z = g (x) = F (g (x)) + C

Чтобы быстрее решать задачи с использованием этого метода, держите под рукой таблицу производных в виде дифференциалов и таблицу первообразных, чтобы найти выражение, к которому надо будет приводится подынтегральное выражение.

Разберем задачу, в которой нужно вычислить множество первообразных функции котангенса.

Пример 3

Вычислите неопределенный интеграл ∫ c t g x d x .

Решение

Преобразуем исходное выражение под интегралом с помощью основных тригонометрических формул.

c t g x d x = cos s d x sin x

Смотрим в таблицу производных и видим, что числитель можно подвести под знак дифференциала cos x · d x = d (sin x) , значит:

c t g x d x = cos x d x sin x = d sin x sin x , т.е. ∫ c t g x d x = ∫ d sin x sin x .

Допустим, что sin x = z , в таком случае ∫ d sin x sin x = ∫ d z z . Согласно таблице первообразных, ∫ d z z = ln z + C . Теперь вернемся к исходной переменной ∫ d z z = ln z + C = ln sin x + C .

Все решение в кратком виде можно записать так:

∫ с t g x d x = ∫ cos x d x sin x = ∫ d sin x sin x = s i n x = t = = ∫ d t t = ln t + C = t = sin x = ln sin x + C

Ответ: ∫ с t g x d x = ln sin x + C

Метод подведения под знак дифференциала очень часто используется на практике, поэтому советуем вам прочесть отдельную статью, посвященную ему.

Метод интегрирования по частям

Этот метод основывается на преобразовании подынтегрального выражения в произведение вида f (x) d x = u (x) · v " x d x = u (x) · d (v (x)) , после чего применяется формула ∫ u (x) · d (v (x)) = u (x) · v (x) - ∫ v (x) · d u (x) . Это очень удобный и распространенный метод решения. Иногда частичное интегрирование в одной задаче приходится применять несколько раз до получения нужного результата.

Разберем задачу, в которой нужно вычислить множество первообразных арктангенса.

Пример 4

Вычислите неопределенный интеграл ∫ a r c t g (2 x) d x .

Решение

Допустим, что u (x) = a r c t g (2 x) , d (v (x)) = d x , в таком случае:

d (u (x)) = u " (x) d x = a r c t g (2 x) " d x = 2 d x 1 + 4 x 2 v (x) = ∫ d (v (x)) = ∫ d x = x

Когда мы вычисляем значение функции v (x) , прибавлять постоянную произвольную С не следует.

∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2

Получившийся интеграл вычисляем, используя метод подведения под знак дифференциала.

Поскольку ∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 , тогда 2 x d x = 1 4 d (1 + 4 x 2) .

∫ a r c t g (2 x) d x = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C 1 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C

Ответ: ∫ a r c t g (2 x) d x = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C .

Главная сложность применения такого метода – это необходимость выбирать, какую часть брать за дифференциал, а какую – за функцию u (x) . В статье, посвященной методу интегрирования по частям, даны некоторые советы по этому вопросу, с которыми следует ознакомиться.

Если нам требуется найти множество первообразных дробно рациональной функции, то нужно сначала представить подынтегральную функцию в виде суммы простейших дробей, а потом интегрировать получившиеся дроби. Подробнее см. статью об интегрировании простейших дробей.

Если мы интегрируем степенное выражение вида sin 7 x · d x или d x (x 2 + a 2) 8 , то нам будут полезны рекуррентные формулы, которые могут постепенно понижать степень. Они выводятся с помощью последовательного многократного интегрирования по частям. Советуем прочитать статью «Интегрирование с помощью рекуррентных формул.

Подведем итоги. Для решения задач очень важно знать метод непосредственного интегрирования. Другие методы (подведение под знак дифференциала, подстановка, интегрирование по частям) также позволяют упростить интеграл и привести его к табличному виду.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Новое на сайте

>

Самое популярное